Climate Change and Infectious Disease Research and Surveillance Activities in Arctic Canada: Zoonotic Diseases and Food and Water Safety & Security

Manisha Kulkarni, PhD
Public Health Agency of Canada
International Circumpolar Surveillance (ICS) Working Group
on Climate Sensitive Infectious Diseases
ICS Week - 19 September 2011
Danish Polar Center - Copenhagen

Canada's Northern Population

POPULATION DISTRIBUTION IN THE CANADIAN ARCTIC REGIONS

Source: Canada, Arctic indigenous population. (2004). In *UNEP/GRID-Arendal Maps and Graphics Library*. http://maps.grida.no/go/graphic/canada-arctic-indigenous-population

Climate Change and Infectious Diseases

- The North is undergoing rapid environmental change driven by climate change, resulting in:
 - Range shifts and northward expansions of wildlife diseases and parasites
 - Emergence of vector-borne diseases
 - Re-emergence of endemic disease
- Impacts on food safety and security
- Damage to infrastructure, affecting water quality and security

Public Health Agency of Canada

Created in 2004 as a separate agency within the federal Health

Portfolio

 Creation of the Agency promoted by the SARS outbreak, a disease of zoonotic origin

PHAC responds to the Government of Canada's commitment to help protect the health and safety of all Canadians and to increase focus on public health

PHAC Arctic Zoonoses Working Group

- Formed in 2008
- Composed of Federal and Provincial/Territorial public health and animal health experts and academics
- Development of white paper on zoonoses in the North that outlines:
 - Audit of zoonoses
 - A review of surveillance, prevention and control capacity in the North
 - Needs and gaps in knowledge, infrastructure and action
 - Success stories
 - Recommendations for improvements in control of zoonoses in the North that are sensitive to cultural needs

Climate-sensitive Infectious Disease Research & Surveillance Activities in Arctic Canada

Scope: Research and surveillance activities

- Food-related infectious diseases.
 - Toxoplasma
 - Trichinella
 - Anisakid worms
 - Marine mammal Brucellosis
 - Salmonella, E. coli O157:H7
 - Terrestrial and marine mammal diseases
- Other zoonotic and vector-borne diseases
 - Echinococcus spp
 - Tularemia, California serogroup viruses, Leptospira, Coxiella, Toxocara, Hanta virus
 - Avian influenza
- Water-related diseases
 - Diarrheal diseases

Food Security & Food-borne Zoonoses

1. Investigation of the sources of *T. gondii* for Inuit communities and importance of river runoff in infection of marine mammals (seals) and Inuit

Investigator(s): A. Simon, N. Ogden et al. (University of Montreal & Public Health Agency of Canada)

Study period: 2007-2010

Location: Hudson Bay and Western Canadian Arctic

- Analysis of 41 sediment samples from water tanks: all negative
- T. gondii seroprevalence in seals shows variation by age and location
- Climate change may shift range of lynx populations in Arctic

Simon et al. 2011 Parasitology

2. Ecology of *Toxoplasma gondii* in wildlife in the Canadian Arctic

Investigator(s): S. Elmore, E. Jenkins et al. (University of Saskatchewan)

Study period: Aug 2010 -2014

Location: Various locations in northwestern Canada, including a field site in

western Nunavut

Key findings:

- 20% of foxes seropositive, suggesting local acquisition of *T. gondii*.
- Future work on testing tissues from rodents, migratory birds and Arctic fox to characterize and isolate *T. gondii*.
- Important baseline against climate change.

Elmore SA et al. 2011 Vector-borne & Zoonotic Diseases (in press)

3. Nunavik Trichinellosis Prevention Program

Investigator(s): M. Simard et al. (Nunavik Research Center/ Makivik

Corporation)

Study period: Ongoing since 1997

Location: Northern Quebec, Nunavik

- Ongoing testing for *Trichinella nativa* in tongues from all walrus harvested in Nunavik communities for prevention of Trichinellosis
- Adult and juvenile walrus of all sexes are infected
- There are areas where walrus are more infected than others
- This is an example of involving communities in research

4. Monitoring wildlife diseases, zoonoses and contaminants during the Nunavik muskoxen experimental hunt

Investigator(s): M. Simard et al. (Makivik Corporation)

Study period: 2006 to March 2011

Location: Kuujjuaq and Tasiujaq, Northern Quebec, Nunavik

Key findings:

- 61 muskoxen sampled to test safety of meat (contaminants, zoonoses) and to monitor herd health
- Similar or lower contaminant levels compared to caribou. Risk assessment for consumption is needed.

 Results will be compared with worldwide muskoxen populations. Disease results under analyses.

5. Engaging communities in the monitoring for zoonotic diseases for food safety concerns and wildlife health

Investigator(s): M. Simard et al., Makivik Corporation, IPY project

Study period: Sampling: 2007-March 2011

Location: Nunavik, Nunavut, Nunatsiavut, Northwest

Territories (sub-Arctic and Arctic Canada)

- Capacity building though training and research lab establishment
- Developed diagnostic techniques for screening of Salmonella sp. and E. coli O157:H7
- Developed qPCR techniques and multi-species ELISA for Toxoplasma gondii
- Evidence of widespread Trichinella infection in northern mammals
- Anisakidae nematodes present in traditionally eaten marine mammals and fish
- Developed community-derived knowledge translation and transfer strategies

6. Identification of Emerging Infectious Diseases in Canadian Marine Mammals

Investigator(s): O. Nielsen et al. (Dept. of Fisheries and Oceans Canada)

Study period: Continuing (since 1995)

Location: Northwest Territories/Inuvialuit Settlement Region, and Nunavut

- Monitoring needed to ensure a healthy sustainable population of marine mammals in Canada (incl. subsistence food sources)
- Isolation and identification of <u>new emerging infectious agents</u> from marine mammals including: seal distemper virus, marine mammal *Brucella*, seal picornavirus, hemabartonella
- New virus strains being sequenced to determine phylogenetic relationship to other viruses

7. Disease Surveillance in Caribou: Filter-paper Blood Sampling and Hunter-based Monitoring

Investigators: P. Curry, S. Kutz et al. (U. Calgary); Circum-Arctic Rangifer Monitoring and Assessment Network (CARMA) collaborators

Study period: 2007-2009

Locations: Across northern Canada, and Greenland

- Filter-paper (FP) samples for antibody detection in caribou comparable to serum in antibody tests (validation for 8 pathogens total)
- Assessment of hunter-based FP collection in northern communities analysis pending
- Circumpolar herd serosurvey of exposure to 9 pathogens, incl. zoonotics (Brucella, West Nile virus, Toxoplasma gondii) found low prevalences of exposure to zoonoses; WNV 0% prev. (important baseline)

8. Range Expansion of *Umingmakstrongylus* pallikuukensis in Muskoxen on Victoria Island

Investigator(s): S. Checkley, S. Kutz et al. (University of Calgary)

Study period: Sampling from 2007 to present

Location: Victoria Island, Nunavut

Key findings:

 Work ongoing to delineate and monitor northern range expansion of *U. pallikuukensis* infestation in muskoxen, climate change, and effects on sustainability of muskoxen populations and food security of local communities

Other Zoonotic and Vector-borne Diseases

9. Echinococcus granulosus and other parasitic zoonoses of public health concern in indigenous communities in western Canada

Investigator(s): J. Schurer, E. Jenkins et al. (University of Saskatchewan)

Study period: Jan 2010 –June 2012

Location: Saskatchewan and various locations across northwestern North

America

Key findings:

- E. granulosus detected in several new locations in North America.
- Genetic work suggests an endemic North American strain and a circumpolar strain of *E. granulosus* in cervids in Canada

• This work forms a baseline against the effects of climate change on the distribution and abundance of cervid intermediate hosts for *E. granulosus*.

Jenkins EJ et al. 2011 Vet Parasitol

10. Distribution, diversity, and health significance of a pathogenic tapeworm (*Echinococcus multilocularis*) in wildlife in northwestern Canada

Investigator(s): K. Gesy, E. Jenkins et al., University of Saskatchewan

Study period: Jan 2010 –June 2012

Location: Various locations in northwestern Canada,

including a field site in western Nunavut

- E. multilocularis detected in several new locations in North America, including a European isolate in central BC that may have greater zoonotic potential than native strains.
- This work forms a baseline as this parasite continues to emerge and re-emerge across the circumpolar north as a result of climate change and other factors.

11. Seroprevalence of zoonotic infections in Northern Quebec

Investigator(s): S. Campagna, E. Dewailly et al., (Institut National de

Santé Publique du Québec)

Study period: Ongoing since 2007

Location: Northern Quebec (James Bay)

Key findings:

- Seroprevalence rates:
 - Leptospira sp. (23%)
 - Francisella tularensis (17%)
 - California serogroup viruses (JC and SSH viruses) (10%)
 - Other zoonoses (Toxoplasma gondii, Coxiella burnetii, Echinococcus granulosus, Toxocara canis, and Trichinella sp.) all ≤5%
 - No exposures to hantaviruses (Sin Nombre virus).

Studies ongoing in other communities in Nunavik.

Campagna et al. 2011 Diagn Microbiol Infect Dis

12. Inter-Agency wild bird Avian influenza survey

Investigator(s): Public Health Agency of Canada with Federal,

Provincial/Territorial & US partners

Study period: Since 2005 (ongoing)

Location: Across Canada

Approach:

- Surveillance with focus on High Pathogenicity Avian Influenza (HPAI)
- National network for detecting wild bird die-offs, and sample collection and analysis
- Testing of all wild birds found dead for HPAI
- Seasonal testing of live waterfowl

Water Security & Water-borne Zoonoses

13. Indigenous Health Adaptation to Climate Change (IHACC)

Investigator(s): J. Ford, V. Edge, K. Thomas et al. (McGill University & Public

Health Agency of Canada)

Study period: 2010-2015

Location: Canada, Peru, Uganda

Approach:

- Burden of illness survey in 3 communities
 - Collect data on GI events, food and water-related sources of infection, food security
- Water quality testing (*E. coli*, coliforms, *Giardia*)
- Qualitative scenario analysis to predict plausible future outlook for study

communities given climate change impacts

13. IHACC

Remote indigenous communities

- Canadian Arctic (Inuit)
- PeruvianAmazon (Shipibo& Shawi)
- Southwest Uganda (Pygmy peoples)

Next Steps

Emerging Infectious Disease Surveillance in Canada

- Drivers of disease such as **climate change**, human population growth, increased production of agricultural livestock, global movement of animals, goods and people are **creating favourable conditions for the emergence of disease**
- PHAC is moving towards activities that are more **aimed at prevention** rather than outbreak response
- A key component of this will be integrated surveillance systems that include information from animal, human and ecosystem health domains

Opportunities for Addressing Climate Sensitive Infectious Diseases in the North

- Canadian High Arctic Research Station (CHARS)
 - Improve research & surveillance capacity
- One Health
 - Global interest and buy-in for One Health approaches
- Circumpolar relationships
 - Circumpolar surveillance for earlier detection of trends

